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Original proposal abstract
The goal of this research is to explore and develop software for supporting visualization and data analysis of search

and optimization. Optimization isan ever-present problem in science. The theory of NP-completeness implies that

the problems can only be resolved by increasingly smarter problem specific knowledge, possibly for use in some
general purpose algorithms. Visualization and data analysis offers an opportunity to accelerate our understanding of

key computational bottlenecks in optimization and to automatically tune aspects of the computation for specific

problems. We will prototype syst6ms to demonstrate how data understanding can be successfully applied to

problems characteristic of NASA's key science optimization tasks, such as central tasks for parallel processing,

spacecraft scheduling, and data transmission from a remote satellite.
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1 Some Discrete Optimization Problems

This section briefly introduces the two problems we spent most of our time with during the research period. We have and
continue to investigate other problems such as satisfiability [Gu et al., 1997, Battiti et al, 1998], however, our successes and the

majority of our efforts todate have been with two problems, hyper-graph partitioning and optimization of ordered binary decision
diagrams.

1.1 Hyper-graph partitioning

When problems get really large, one possibility is to break them down into pieces, solve the components individually, and then

piece together a solution. This approach addresses large optimization problems so they can be solved in pieces, partitions work

performed across multiple processes [Ponnusamy et al., 1994], and partitions a circuit too large to fit onto a single chip [Alpert et
al, 1995]. The same technology, partitioning, can also be used for image segmentation [Malik et al., 1997] and document

clustering [Han et al., 1998]. With k processors, a problem should be split into k approximately equal-sized, loosely-coupled

G ® c_ Q
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Figure 1. A graph partitioned into two.

pieces, one for each processor. Of course, it might not be possible to find pieces that are sufficiently loosely coupled to make this

plan work. An illustration of a 2-ary partition of a generic search problem is given in Figure 1. Here, constraints are represented

as arcs, and the set of constraints crossing the partition boundaries, represented as heavy arcs. To apply this kind of problem
decomposition requires a good solution to the partitioning problem, so partitioning itself cannot be addressed this way.

Hyper-graph (or netlist) partitioning [Alpert and Kahng, 1995] is one _3ortilion of cost 4

approach to this general idea of problem decomposition. In the two-way node (cell} _:_ (.3. _) _ Co 0
min-cut netlist partition problem, one is given a hyper-graph whose nodes O , •
are usually referred to as cells, and whose hyper-edges are referred to as (5' .= C'. " .C" " .@
nets. The nodes are to be split into two partitions such that the minimum ne_ , - ': ""i /

number of nets have nodes in both partitions. These cut nets are referred to . '
• \ " _ /

as the cut-set. The cost function to be minimized is the size of the cut set, C) O '_ ';)_ O '(.i)
referred to as the cut-size. This is the hyper-graph version of the graph

partitioning problem. Typically, a balance constraint is also enforced whereby the I Figure 2. A hyper-graph and partition. I
area of each partition must lie in a given interval, for instance [0.45,0.55] of the total

area. A hyper-graph is represented in Figure 2. This does not satisfy the balance constraint of [0.45,0.55] because the right

partition is of area 0.4 of the nodes (assuming each node has equal area). The cut-size is 4 in this case since while 5 wires appear
cut, they only belong to 4 nets.

Common local search techniques for netlist partitioning are the Kernighan-Lin (KL) algorithm and the Fidducia-Matheysses (FM)
algorithm [Alpert and Kahng, 1995]. Recent state of the art algorithms [Dutt and Deng, 1996; Li et al. 1995; Hauck and

Boriello, 1996; Alpert et al., 1997; Karypis et al., 1997, Malik et al., 1997] apply more clever heuristics for choosing the next

node, techniques for finding an initial partition, spectral (eigenvalue) methods, or they preprocess the problem via clustering.
However, most retain the local search FM or KL algorithms at their core.

1.2 Ordered binary decision diagrams

Many synthesis, verification and testing algorithms in VLSI design manipulate large switching formulae, and so it is important to

have efficient ways of representing and manipulating them. In recent years ordered binary decision diagrams (OBDDs) have

emerged as the representation of choice for many applications [Bryant, 1992; Bryant 1995]. A binary decision diagram is a
graphical representation of a logic function. Given a particular variable ordering, the OBDD is a canonical form, which is
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desirableasitmakesequivalenceteststrivial,butunlikemostcanonical
representations,OBDDsarecompactformanyfunctionsandlendthemselvestofast
executionoflogicaloperations.Forinstance,anOBDDcanbeusedtofindall
solutionstoaSATproblemefficiently[Guet al. 1997].

A simple example of two binary decision diagrams which represent the same logic
function is shown in Figure 3. If we want to know the value off for a particular

assignment of the variables a, b, c, and d, we simply follow the corresponding path
from the top of the OBDD. The function may be reconstructed from the graph by

enumerating all paths to the 1 node and, in this case, converting to sum of products

form. The disjunctive normal form read this way from the left and right OBDDs
appears under the figure. The ordering of variables on every path of an OBDD is
forced to be identical, notice the variables in the left OBDD occur in levels. This

gives OBDDs their canonicity.

Although both OBDDs shown represent the same function, they differ in
terms of the ordering of the variables, and, it is important to note, in terms of left =

the number of nodes. The OBDD represents a function by a graph whose size is
measured in terms of number of nodes, and this is the cost function to be minimized

f = ab + _c + bed 0 (

abc + abcd + _zbc+ ab right= acdb + _zc+ ab

I Figure 3. Two equivalent OBDDs. I

when constructing an OBDD from a logic circuit. In the best case the OBDD size is linear in the number of variables, as for the
right OBDD, but given that any node can spawn two more nodes on the next level of the OBDD, it is obvious that OBDD size
may be exponential in the worst case.

2 Bayesian learning applied to the "big
valley" effect and clustering methods

/t ,

global minimum

Modern optimization algorithms that are considered best of their kind, such as
J

simulated annealing [Kirkpatrick et al., 1983], search using multiple restarts ....

such as "go with the winners" [Aldous and Vazirani, 1994] large-step
simulated annealing [Martin et al., 1991], sophisticated stochastic variants of

local search [Gu et al. 1997, Fukunaga et al., 1996, Martin et al., 1992], as

well as some versions of genetic algorithms have at their core the concept of

the big valley which goes as follows. The search space is not a series of large

valleys, but rather is a fractal structure with many valleys within valleys. Figure 4 I Figure 4.
illustrates this phenomena showing a big valley (see also Figure 12 in [Gu et al. 1997]

i' ' '"

local, perturbed
minima

4

i¸ •

/

A global minimum in a well. I
and Fig. 3 in [Aldous and Vazirani, 1994]). The empirical evidence for this phenomona in discrete optimization problems is

significant. The local, perturbed minima surrounding the global minimum are far more dense, and thus much more likely to trap

a local search algorithm. Recent empirical research also suggests that better quality local minima seemed to be closer to the

global minimum [Boese et al. 1994], so perhaps there is a broad shape in the big valley despite the disruptions caused by the

many local minima [Boyan et al., 1998]. Again, we would expect this to be a fractal property of the search space. The intuition
justifying the big valley is as follows: as you move away from the global minimum in Hamming distance, the cost more often
increases gracefully, and at least some of those perturbations of the global minimum are themselves local minima.

Simulated annealing is intended to bounce out of the sub-optimal local minima, but unfortunately does so with all the
purposefulness of a random walk. Genetic algorithms are intended to combine the best features of these local minima and thus

arrive at a superior minima, but unfortunately, again, use randomness when combining solutions. In a search space with many

thousands of local minima, variations of local search can only seek out the minimum if they have some stronger overall direction.
One approach that has recently seen apparent success with coping with "big valleys" is clustering, described next.

2.1 Clustering methods

State-of-the-art optimization algorithms for adaptive grids and finite-element graphs for scientific computing [Ponnusamy et al.,
1994], for CAD tasks like placement and routing [Mallela and Grover, 1988; Sun and Sechen, 1995] and hyper-graph partitioning
[Alpert and Kahng, 1995] use a technique called clustering to achieve significant performance increases. In fact, on those

problems where clustering is used, it seems to be essential to achieve state-of-the-art performance on large problems [Alpert and
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Kahng,1995].Fortheseproblems,clusteringispossiblythemostsignificantperformancebreakthroughinthelasttwodecades.
Clusteringcanscaledownaproblemincomplexitybyanorderofmagnitudeormore.It hastheeffectofsmoothingoutthebig
valleysinceeachsolutionintheclusteredspacemapstoasolutionintheoriginalspace.Thusclusteringallowsextensivesearch

.... ._..,_r:>_

I Figure 5. A graph and a clustering of it. I

l

1

on the reduced problem, and often fast variations of local search will be adequate for this. All approximation methods are

motivated by similar goals [Ellman et al. 1997] and bounding methods are similar [Selman and Kautz, 1996]. Clustering works

as follows: For hyper-graph partitioning, certain nodes are tied together or clustered so that, thereafter, they always occur in the
same partition. Nodes so tied together form a single super-node and induce a new problem with fewer nodes and often fewer nets

(these merge or are absorbed within a single super-node). For a generic graph partitioning problem (where all nets are of size 2),

a representative clustering is illustrated on the right of Figure 5. Clustering has typically been based on ad hoc variable strength

heuristics together with standard clustering algorithms from the pattern recognition community, such as agglomerative clustering.
An engineering-oriented study of several methods appears in [Hauck and Boriello, 1997].

2.2 Learning clustering for partitioning is feasible

One recent innovation in clustering is by Hagen and Kahng [ 1997] whereby the intermediate results/data of local search are

combined to create clusters. Note a p-way partition of a variable space induces a clustering with p super-nodes. Overlaying k
binary partitions to form their finest multi-way partitioning, similarly, induces a clustering with up to 2k super-nodes. Hagen and

Kahng recommend using k=1.5 log2 C partitions for this construction, for C the number of nodes.

The plot in Figure 6 illustrates some features of this purely data driven approach to clustering. These results are for the
"industry2" circuit from the ACM/SIGDA Layout Benchmark Suite from

MCNC, and similar results hold for all other circuits. This circuit has 12637 80

nodes and 13419 nets so log2 C is about 13. The X-axis gives the number of

partitions k used to induce a clustering as a factor of log2 C. First, as one
increases k, the number of nodes in the induced clustering increases. This is

shown by the dot-dashed line that banks upwards to the right with axis on the 60

right side of the plot. Second, the solid line with axis on the left plots the

number of nets in the induced clustered hyper-graph divided by the number of

nodes. This is a measure of complexity of the induced clustered graph since ,3
40

more nets per node makes moves harder and a good solution less likely. The -_
dashed line with axis on the far right plots the minimum cost partition of the _"

induced clustered hyper-graph from 10 FM runs.

For k greater than log2 C the induced clustering can have up to C nodes, so 20

nodes no longer occur in the same finest partition by chance. Thus for k

greater than log2 C, the nets/nodes ratio should stay at a value comparable to
that for the full-scale problem, but as k increases cost should increase because

search fails to scale. Note that if you are learning clusters from data correctly, o
0.0

then as k increases, the quality of the clustering should only improve as you get

more data. For k smaller than log2 C, clustering is now introducing a.random

element, and thus as k decreases, cost gets progressively worse, along with I

the problem complexity. Yet standard connectivity clustering methods I

Hogen--Kohn 9 clusters
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Figure 6. Hagen-Kahng clustering for "industry2"

work well, essentially with k=0. This approach would benefit from the application of Bayesian learning methods [Bernardo et

al., 1994] to interpolate standard connectivity clustering modeled as prior probabilities with data-driven clustering in a
statistically optimal sense.
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2.3 A simple model for local minima in the big valley

This section presents a simple noise model showing how local minima might be viewed as perturbations of the global minimum,

and thus how we might use that model to infer properties of the global minimum. We use this as an illustration of applying more

rigorous data understanding methods to in the context of Hagen-Kahng clustering. This section presents one of the major results
of our research.

The optimization problem we consider here is standard hyper-graph partitioning where the area of each partition is restricted to

be less than 55% of the total area. Experiments were run on some of the larger problems in the ACM/SIGDA Layout Benchmark

Suite from MCNC, where our copy was obtained from Charles Alpert's website at UCLA. Smaller problems are uninteresting for

clustering methods. Details of the circuits used are listed under "standard results" in Table 1. The "Cut-size" column of these

standard results lists best published cut-size on these tasks [Li et al., 1995; Karypis et al., 1997; Buntine et al., 1997; Hauck et

al. 1997; Alpert et al., 1997].

Our simple probabilistic model of local minima is as follows: we claim characteristics of the global optimum occur with

frequency (l-q) in the perturbed local optimum. When we sample a local minima, it will have on average noise q on top of the

global minimum. Therefore, to estimate whether a characteristic X holds in the global minimum, we estimate the frequency with

which X occurs in local minima. If this frequency is greater than (l-q), then under this model with high probability, X also

occurs in the global minimum. Note that q is a free parameter in our model. We claim different optimization problems with

have different intrinsic noise levels in their big valley, and thus we leave q free to vary. Thus statistical information about the

local minima are used to infer characteristics of the global minimum. This is an extremely simple model, and we intend to

investigate more extensive multi-dimensional probabilistic models [Buntine, 1996] in our research.

We apply this model to clustering as follows: the characteristics X we investigate take the form "node A and node B fall in the

same partition." We have taken 200 FM runs to find a sample of local minima for each of the circuits in Table 1. The least cut-

size for the 200 FM runs is listed under the far right column, "Best FM." We have taken statistics from these samples and for

every pair of nodes (A,B) we then estimate the frequency with which the nodes lie in the same partition. For a given noise level q

under the simple model above, we can therefore estimate which nodes should belong in the same partition of the global minimum.

Contingent on a value for q, this information is then collated for all nodes (A,B) to produce a clustering of the nodes, since "node

A and node B fall in the same partition" is an equivalence relation.

Table 1.

Dataset

industry2

industry3

avq-small

avq-large

s9234

13207

15850

_35932

_38417

!s38584

19ks

primary2

Geo. Mean

Results from clustering experiments

Standard results

Nodes

12637

15406

21853

25113

5866

8772

10470

18148

23949

20995

2844

3014

11335.82

Nets Cut-size

13419 164

21923 241

22124 128

25384 127

5844 4G

8651 55

10383 42

17828 41

23843 49

20717 47

3282 104

3029 142

Connectivity clusters

Nodes Nets

2841 3568

3402 6489

7450 8326

7684 8365i

909 916

1082 1016

1425 1348

3887 3567

1102 1331

4017 3830

741 960

945 1169

2142.28 24:

Cut-size

29

285

17

13C

47

67

53

43

67

53

130

149

Large

Nodes

925

949

2397

766

251

325

682

1323

791

631

335

748

sample (200 FM) clusters

Nets

1476

2359

3363

1564

335

444

810

1391i

1084

814

568

1118

104

Cut-size Best FM

183 396

262 287

168 305

188 320

41 49

53 85

56 98

45 104

69 378!

50 102

110 12_

143 177

165.27

To empirically measure the success of this clustering method, we use a high-performance non-clustering variant of FM, Adaptive

Stochastic FM [Buntine et al. 1997] that runs stochastic FM to generate 10 quality local minima and then the best local minima

has its cut-size reported in "Cut-size." We refer to this below as ASFM-10, and it takes time approximately equal to 60 FM

runs, but since this is on a much smaller (clustered) problem, the run-time is not significant. To account for the free noise

parameter q, we generate clusters for q=0.8, 0.85, 0.9, 0.95, 0.97, run ASFM-10 once for each q, and choose the clustering and

resultant partition minimizing the cut-size. The cut-size measured from this one run of ASFM-10 is therefore one measure of the

quality of the clustering, as reported under "Cut-size." Other quantities relevant to the quality are the number of nodes, the

-6-



number of nets, and their ratio. Generally we want fewer nodes, and a smaller nets-per-node ratio. These results are recorded
under the column heading "Large sample clusters."

To provide a benchmark, we have compared these results against clustering obtained using a simple connectivity method we label

"connectivity clustering" in the table. We use the agglomerative clustering method of Alpert et al. [1997] excepting that

recursive re-evaluation of the connectivity measure is not done. We also looked at 8 different levels of agglomeration and chose
the one giving the minimum cut-size. We claim these modifications are fair since no recursive re-evaluation was done for the

large sample clustering method above, and the choice of optimum cut-size from 8 can only favor this method.

From the table, we can see the following: (1) The large sample clustering method generates significantly smaller hyper-graphs
with significantly smaller cut-size. The difference is generally consistent across circuits. Thus large sample clustering is

significantly superior in forming clusters to methods attaining current best published [Alpert et al., 1997]. (2) Running ASFM

once on a large sample clustered hyper-graph, and no other computation, the results on the far smaller clustered hyper-graph are

near best published for the problem. Typical state-of-art algorithms, considerably more sophisticated with recursive clustering
and multiple iterations, score a geometric mean of about 86 on this measure so this simple approach is near state-of-the-art. (3)
The clustering results provide a full 200% increase over the best cut-size resulting from the entire 200 FM runs. Thus there is

clear evidence that under this model we learnt significant information from the local minima about the global minimum.

2.4 Applying Bayesian learning to the simple model

The standard technique used for clustering is to agglomerate nodes with high

connection strength, where connection strength for two nodes C(A,B) is
measured by some measure such as a weighted average of the nets the two
nodes share. When two nodes are on a smaller net it contributes more

towards connection strength than when two nodes are on a large net which is

quite like cut anyway. C(A,B) = ,Y_,.... ,.,,A.B,N I/IN1, for INI the net size.

Calibration [Dawid, 1982] in one sense is a process whereby we map
measurements about an event to measurable frequencies of the events "_->_

occurrence. In this example the event we are considering is whether node A _ 0.4
and node B occur in the same partition of a local minima. For a given hyper- o
graph, the frequency for this, qa.B , is the frequency over all local minima, o.2

This corresponds to the q used in the previous section. Since there are many
different hyper-graphs with many different nodes A,B, if all we knew was o.o

that the connection strength C(A,B) =C, then what can we say about qa.B. o.0

Figure 7 shows a scatter plot of this situation. For all medium to large

problems we found, we generated 200 local minima with FM and thus I
measured qa.B for pairs of nodes A,B in the problems. Each measurement is I

indicated by a dot, where the X-axis is C(A,B) and the Y-axis is qA.o. The

scatter plot clearly shows that for C(A,B) over about 0.8, we have high

confidence that A and B will almost always lie in the same partition of a 1_
local minima. The solid line on the plot is the function m(X)= (0.5 +

0.5"(X/0.6) °'7) which is, from eyeball, our best guess for qa,B given

C(A,B)=X. In fact, by moment matching (a simple statistical inference

procedure), when C(A,B)=X, the qA,B'S as observed in the data have lo

roughly a Beta distribution with mean m(X) and effective sample size 5.
Thus, by mapping the connection strength heuristic to the measurable _
event "node A and node B occur in the same partition of a local minima," _.

we can use connection strength to predict the frequency of the event. We 5

say we have calibrated connection strength (to the particular event).
Clearly, we could also calibrate three different heuristics to one event

(using supervised learning) which provides one way of combining the
three heuristics to create a more powerful heuristic, o

0.0

Note that calibration removes one of the key arguments against Bayesian

Collbrotln 9 the prior

__0.8 ' _'_; "
'_:

0.6 ,.,

_ i_'
• )

0.2 0.4 0.6 0.8 1 .O

Connect;on strencjth

Figure 7. Calibrating "connection strength"

Prior + Posterior

/J

0.2 0.4 0.6 0.8 1.0

methods which is the perennial question, "where do the priors come | Figure 8. Updating connection probabilities
from?" For search, we have a good supply of benchmark problems and thus prior

can be estimated by the calibration step above. Calibration in the search context thus eliminates most concerns with using the
-7-
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Bayesian method [Bernardo and Smith, 1994]. This is excellent: when priors are known, most theoreticians agree that Bayesian
methods provide superior statistical solutions to inference problems.

How can this calibration be used? Suppose you know that C(A,B)=X. For X=0.1 and X=0.4, this situation is plotted on Figure 8.

The solid lines give the probability density functions for qA.B in the original

calibrated situation where no data exists. The density function with more
weight to the left (matching X=0. I) says that qa.B might well take on any a0

value between 0.2 and 1 according to prior problems. The density function

given by the solid line with weight to the right says that qA.O is quite likely

above 0.9. In this case, our best estimates of qa.B are 0.55 and 0.95
respectively. Thus for X=0.4, one might consider clustering nodes A and B 8o

together a priori, which in fact is what a good clustering algorithm will do.

For X=0.1, one would leave nodes A and B separated. Now run FM 15 times
for this problem to obtain 15 local minima. Suppose you now know that ,3

"_ 40
Ill

nodes A and B occur together in 15 out of 15 local minima found. Then _r
what can you say about qa,B now.'? Standard Bayesian calculations [Howard,
1970] for this Beta distribution yield the updated probability densities for the

qa,B given by the two dashed lines. Our best estimates for qa.l_are now 0.95 20

and 0.98 respectively. Thus from having seen nodes A and B together in 15

partitions, despite their low connection strength, we should be willing to join
them in a cluster.

This approach yields a cluster-forming algorithm rather like the large sample

clustering described in the previous section where q for each pair of nodes is
now a function of k, the number of local minima taken. For k=0 this behaves

like regular clustering (the connectivity clustering of the previous section). For

k=200, this behaves like large sample clustering above and in between things are

0

0.0

Boyesron clusters

.... , .... , .... , .... , , 30001 ]600

I

• ,, 2°_lJ4°a_

0,5 1,o 1.s 2.0 23
Portit;ons/Fl_/- runm

I Figure 9. Bayes clustering of"industry2" I
interpolated. For k=0.8 log2C for C the number of nodes we were able to achieve results near to the performance of k=200 and

few hand-worked recursive applications of the methods (our experimental software does not yet embed clustering correctly as per
standard methods [Alpert et al., 1995, 1997]) yielded cut-sizes equaling or exceeding those of large sample clustering (above)

and in some cases best published. Figure 9 gives results for this method for ACM/SIGDA benchmark dataset "industry2" in the

same format as Figure 6 of Section 3.4. The results are stunningly superior on all counts and the problems we had noted earlier

with Hagen-Kahng clustering are now eliminated. This result is generally consistent across circuits.

2.5 Conclusion for clustering

We have demonstrated the application of Bayesian learning methods to clustering as it is used in hyper-graph partitioning. We

believe there is significant potential for continuing this research. Given the general important of the "big valley" effect for

discrete optimization, we believe this research also has significant applications in other domains.

3 Visualization applied to optimization
We have done extensive experiments in several aspects of graph partitioning, some in consultation with Dr. Jeremy Frank of
NASA Ames Research Center. These experiments have had mixed successes, however, we believe the lessons learnt are
valuable, and we summarize these at the end of this section.

3.1 Static visualization applied to local search algorithms

This research was performed prior to the NASA Data Understanding project [Buntine et al., 1997], however, it is relevant for

subsequent discussion so we reproduce it here. We applied the standard FM algorithm [Alpert et al. 1995] to the SIGDA/ACM

data sets mentioned in the previous section. We instrumented the algorithm and gathered a variety of data, which we visualized
in 2-D and 3-D using a variety of tools available in the visualization language IDL. Of several views of the data we created, one

stood out as being informative.

If the cost (number of nets cut after each move) is viewed, Figure 10 shows the general behavior characteristic of larger circuits

during a typical run of the algorithm. The left plot shows cost for a full run, and the right plot zooms in on the performance
during part of that. The X-axis corresponds to swaps, and the Y-axis is the evaluated cost function. The lines drawn vertically
from the cost curve down to the X-axis indicate the start/end of a pass. Note that the first three passes have not been included in
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the figure since these would dwarf the above curves as the algorithm is mostly performing rapid gradient descent initially.

40005000_- 400050006000i_

3000 -
.5000

2000 _ 2000

"1000 - LJ1 1000

0 ,., i i i i i

0 8"DOxlO5 B'SOx105 9"00x105 9"'""""50XlQ5 l"nOx106 1"05x108 l'lGX1D6

0 5.0xl 04. 1.0x 105 1.5xl 05

Figure 10. Behavior of cost during FM

What is most interesting about the figure is the inverted "U" shape of the costs during each later pass. The first pass or two (not

shown) are "U" shaped as the algorithm does rapid gradient descent. Note that the end point of each pass is identical in cost to

the starting point, due to the symmetry of swapping every cell. The inverted "U" shape means that the algorithm invariably

chooses the best partition from near the beginning or the end of the pass. This makes sense if one considers that the algorithm is

merely making local changes towards the end of a run, and the local changes therefore lie near the beginning or end of the pass.

This raises the question, what does the effort for the middle 95% of the pass achieve? We refer to a full pass as one that

eventually locks every node during its course. In view of this we made the following hypothesis:

The use of full passes in the later passes of the FM algorithm is serving the purpose of performing a local restart for the

algorithm, and this goal can also be achieved by stochastic local moves.

We tested and partially confirmed this hypothesis in a series of experiments reported in [Buntine et al., 1997]. What is most

important about this is that it confirms the usefulness of visualization for analyzing the performance of the algorithm. No amount

of studying of simple trace information or final results would have yielded this. Note, however, that the analysis proceeds as
follows:

• We instrument the code in order to capture data of interest.

• We then pass that data to a powerful visualization/graphics system such as Matlab or IDL and then explore the data in this

context.

Thus we need to be able to neatly instrument the algorithm. Moreover, notice that this can be done as a one-off. We do not need

to monitor the algorithm dynamically. Rather data is gathered, and examined afterwards.

3.2 Dynamic visualization

Inspired by this success, we then proceeded to create a dynamic visualization. In this scenario, we connect the algorithm to a 3D

visualizer written in Openlnventor 3D, a C++ API using OpenGL from Silicon Graphics, and attempt to view different facets of

the optimization as the algorithm performs. This effort, while not producing any significant insights, did offer a number of

technical challenges and made us realize a more concerted effort would be required. In this section, we briefly review the issues.

Process�implementation issues

First, we had some trouble hooking up the optimization algorithm with the visualization system. Visualizers typically work in a

number of modes. Proprietary systems such as IDL or Matlab could interface with the optimization algorithm in one of four

ways:
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• They are run as the primary process and call the optimization algoritlml as a subroutine. This requires installing call-backs

so the subroutine can pass data back to the visualizer. This is a difficult process to manage because the optimization system
cannot simply stop and restart procedures to return control to the top-level calling function every time data needs to flow

back. We were able to use this approach to link our FM partitioning algoriltml with OpenGL, but it required creating a full

system for saving and restoring search states, something not realistic in general. A screenshot is given in Figure 1 I.

• They call the optimization algorithm as a sub-process, performing data transfer via pipes. This approach, while conceptually

attractive in terms of interfacing with the optimization algorithm, one only now need install reads and writes to the pipe at

I Figure 11. Visualizing nodes during FM

key places, ends up placing undue overhead on the opt_mlzatmn system, one was visualizing a simple data stream, this

would be easy, and in fact corresponds to the static approach done previously. However, the intent of dynamic visualization
is to.open up more of the internal data structures for inspection and thus visualize the inner workings of the algorithm. One

could keep a lull copy of the optimization/search data (values of all variables and associated heuristics) in the visualization

environment for probing during the visualization, but this requires significant overhead in terms of programming data
structures and message passing to ,nainlain lhe local copy.

- 10-



, _ ! ...._!_,,_ : I_L ¸. ' , ! _

• Alternatively, the optimization algorithm is written with two threads, one for the optimization itself and one to service the

visualization system by controlling flow and servicing data requests. The visualization system then operates as a primary
process and interacts with the second thread of the optimization process, in effect controlling it.

• Finally, the visualization system operates as a sub-process controlled by the optimization system. We claim this is in-
appropriate because the visualization now operates passively.

Our preference therefore is the following: the optimization system has a second thread to service the visualization system, and

both systems operate independently, loosely coupled by commands. However, these approaches still seemed lacking. During our

development, we were continually going backwards and forwards between systems adding new data types, modifying the
visualization methods, etc., as we attempted to see various features. The programming cycle here had a lot of redundancy in that

the optimization system and the visualization system had some redundancy. We fault the general approach was slow and tedious.
As a result, we began a new

3.3 Conclusions

The dynamic visualization system we developed enabled us to do some initial experiments before we abandoned it for a new

approach discussed next. Our main bottleneck was the prototyping time required, and the tight interface needed between the

visualization programmer and the optimization programmer. We felt frustrated with the speed of development, compared with

static visualization where the optimization programmer merely dumps data and hands it over to the data analyst.

The main problem we encountered was the mass of nodes needing to be visualized. A medium sized circuit might have 10,000

nodes and these cannot be displayed on the screen. Therefore, we needed ways of better displaying large networks of constraints.

One approach is to apply partitioning methods to break the problem up into pieces, as per hyper-graph partitioning. Our belief,

however, is that standard local search algorithms and other fast algorithms such as MINCUT are simply not good enough at this
to help. We spent considerable time with various versions of MINCUT applied to the OBDD minimization problem and on

smaller problems obtained empirical support that the structure of the circuit, as reflected by the graphical decomposition, gave

direction about the minimum-ordered OBDD. We now believe that OBDD minimization can be improved through some kind of
graphical decomposition, however, we now need better tools for doing this.

We were able to develop a state of the art hyper-graph partitioning algorithm [Buntine et al., 1997] based on experiences with

static visualization. We got promising empirical results using dynamic visualization, however, were hampered by a range of
implementation issues that lead us into a new direction.

4 The JavaTime Visualization system for component visualization

As a result of our experiences with the previous systems, we began a new project that takes a fresh cut at the problem of

instrumenting algorithms and visualizing results. This is the JavaTime Visualization System, in development by Michael
Shilman. The goal of the JavaTime Visualization package is to help systems designers gain insights into the structure, behavior,

and performance of component-structured systems through new visualization techniques. The package combines an integrated

user interface for constructing dynamic visualizations with a small but growing collection of modular visualization components

targeted at systems development. Though it is still a work in progress, it has been successfully applied to several simple
algorithms. The basic user interface concept is that of visual programming.
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Theuserinterfacetothepackageallowstheusertoprobetime-varyingsignalsinthealgorithmandflexiblydisplaythem.Back-
endcompilerinfrastructurepermitsarbitraryinstrumentationofusercodetoenrichthesetofpossibleprobesautomatically.
Codetomonitoraparticularvariableatcertainplacescanbeautomaticallyinsertedanddeleted,andhookeduptoavarietyof
visualizationtypesincludingsimpledisplays,plots,etc.
Initscurrentstateofdevelopment,thesystemcaninstrumentapieceofcodeormonitorsignalsinacomponent-structured
system,andflexiblycontrolthewaythedataisdisplayed.A JavaTimeSnapshotofaJPEGdecompressionalgorithm
implementedincomponentsisgiveninFigure12.Thethreeimagewindowscorrespondtoprobes,whicharealsoseeninthe
componentview.

4.1 Visualization Probes

Visualization probes are a user interface metaphor inspired by physical probes used in hardware design. A user can attach a

probe to any point in the system programmatically or via a visual interface which is consistent with the component editing

interface. Probes provide a convenient way to view partially computed results, communication between components, and other

debugging and performance metrics from the code, based on user-created ports which can be easily added to the components.

In addition, JavaTime's code instrumentation support makes it easy to semi-automatically modify Java byte-codes to track low-

level performance metrics. An instrumentor object can optionally add ports to the instrumented result, and these ports can be

iiiiiiiii!iiiiiiiiiiiiiiiii_]iiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiii!i

12. A JavaTime Visualization of JPEG

4.2 Component Libraries

Component libraries are the least mature part of" the system, as the visualization infrastructure is still under development. The
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ideaisthatthereareanumberofverygeneralstandarddatatypeswhichwemightwanttovisualize. These types might include

multivariate data, graphs, trees, structured text, etc. By determining an expressive set of core data types, it will be possible to
construct visualizations more rapidly.

4.3 Graph Drawing

The project grew out of an effort to better understand partitioning algorithms through animation and user-controlled filtering. We
began by porting the original graph display and filtering code from its original Openlnventor 3D C++ API to 2D Java AWT, for

portability. This also included a number of API enhancements which added more flexibility. For example the new package

provides a way to efficiently annotate nodes with application-specific information for a simple way to mesh the API with existing
Java applications.

This port has matured into a moderately stable graph drawing library. In addition to basic nested graph drawing, the package

provides an assortment of visualization techniques ranging from animation to data filtering to graph clustering and layout. These

Legend

i Enqueued

_ Running

DNS

_ Connect

i Write

[]Read [ Figure 13. A JavaTime Visualization of multi-threads ]

techniques are combined with assorted graph editing capabilities which are made available to applications at multiple levels of
abstraction.

4.4 Sample Visualizations

We have used the JavaTime system to visualize a number of performance metrics in system design to help debug and optimize
systems under development. Our first success was in debugging/optimizing a functioning but slow system which constructed

lightweight Java threads for highly-multithreaded data acquisition applications. The system transforms a restricted subset of

multi-threaded Java programs into split-phase single-threaded programs.

The bulk of the project was writing the transformation and simply making it work, and this was done without the help of

visualization. However, once the transformation was complete, we did not witness the performance improvements and scalability
that we expected of the system when we applied it to a web crawling application. Rather than spending a bunch of time profiling
the code, we hand-instrumented the code to spit out markers at certain points in the code, which showed us at what points in time
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threadstransitionedbetweenkeyphases,bothin theuserapplicationandinourunderlyingruntimesystem.Forexample,putting
thethreadonthereadyqueueispartofthethreadruntime,theDNSlookupispartofthenetworklibrary,andtheHTMLparsing
ispartoftheapplication.

Byvisualizingthesemarkersasextents over time, the system's performance was literally opened up before us. The dynamic
visualization we developed here is shown in Figure 13. Within minutes we had determined the cause of the performance hit (our

DNS timeout was too short), and had also optimized a number of other parameters at various points in the network library. Some

of these visualizations have been point tools for specific tasks; recently we have been working on infrastructure that is applicable

to general component systems, particularly in the areas of component communications and memory usage.

5 Configuring and tuning optimization systems

Any review article of a popular discrete optimization problem will mention an overwhelming variety of options one can code. We

illustrate this below with hyper-graph partitioning, but analogous comments hold about SAT, any well studied optimization

problem such as traveling salesman or constrain satisfaction, and to a lesser degree OBDDs. For instance, for hyper-graph

partitioning there are multiple search spaces: moving a node across the partition (in FM), swapping two nodes (in K-L), moving a

net in the dual graph, clustering two nodes together, clustering all nodes on a given net, and deleting a net entirely [Alpert and
Kahng, 1995; Karypis et al. 1997; Alpert et al., 1997]. There is also a range of options for performing kicks [Fukunaga et al.

1996]. For each move type, there are often multiple heuristics for selecting a move of varying complexity to compute.
Moreover, moves could be local greedy (choose the first that improves cost) or local optimum (choose the best of all local

moves). Researchers typically combine several of these options together to produce a single algorithm variation, and it is not

uncommon for papers to report two, three, or even ten different variations being tested at once. This exploration of the algorithm

variations reached a peak in the paper by Hauck and Borriello [1997] who managed to achieve excellent results by trying many
combinations.

Methods of dealing with these many options in configuring an optimization algorithm, which we will refer to as the configuration
problem, are confounded by three key issues for practical optimization:

• We only have a limited supply of benchmark problems to tune our systems with. In early speech recognition development,
DARPA found the need to change benchmarks to prevent algorithms from being tuned so specifically to the particular
benchmarks that their performance suffered in general.

• Components of search algorithms are such that it can be difficult to characterize their effect on the problem in terms of time

and cost decrease other than empirically. Proofs and average case analysis when they exist can be invaluable [Purdom et al.,
1997].

• There is no general purpose, "superior" algorithm for any one problem domain [Wolpert et al. 1995]. Many NP-complete

problems become average-case polynomial time depending on how you define your distribution of problems [Wang, 1997].
For SAT problems particularly, a particular application will usually produce problems over a certain distribution, for

instance for stuck-at-fault test pattern generation [Larrabee, 1992]. To gain the advantages of average-time polynomial
behavior, one needs algorithms that can adapt to the distribution of problems being presented.

How does one explore the full range of algorithm variations given a sparsity of benchmark data and an obligation to tune

algorithms to the distribution of problems being encountered? Perhaps moves in the dual graph, considered to perform poorly as
full passes [Alpert and Kahng, 1995] would make excellent kick moves? Perhaps the different move types should be used at

different stages of the problem (for instance, during rapid gradient descent, or during exploration of wells)? For iterated local

search, when should one perform a kick and when should one simply restart the entire search? The question of exploring

algorithm variations applies equally well to clustering and thus scaling down a problem. How would one trade-off computation at

different scales? When should scaling or clustering recurse? How could one combine the fixed clustering strategies based on
connectivity measures with data-driven clustering?

With these kinds of concerns in mind, recent research in constraint satisfaction [Minton, 1996] and scheduling [Gratch and
DeJong, 1996] demonstrates automatic configuration of search systems leads to improved performance, and suggests schemes for

doing this. Minton uses simple code generation methods to create variations of backtracking algorithms and then runs empirical
tests to find the best, and Gratch et al. use data-efficient approximate statistical tests to differentiate between different branches in

pseudo-code. Another possibility is simply to leave a few real-valued parameters in the system and apply methods such as

optimum control [Moore et al., 1998] to find which setting yields average-case peak performance. Concepts such as bounded
rationality and continual computing from decision theoretic computing provide a clear theoretical context for this kind of research

[Horvitz, 1989; Russell, 1997; Horvitz, 1997]. Briefly, decision theory is the probabilistic analysis of the effect of taking
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different actions performed in order to minimize the cost [Clemen, 1990]. Computation itself can be viewed as a cost, so the

analysis of different computations and expected outcomes can be performed during computation. One would apply decision
theory "in the large" to configure the algorithm and tune its parameters.

Finally, note that the JavaTime Visualization system with its visual programming interface is an ideal platform on which to

implement these tools for decision theoretic control. Probes and such can be installed on components, and then the decision
theoretic controllers added where needed.

6 Further research opportunities for applying data understanding to
optimization

As part of our research, we have surveyed the field of optimization to understand ways in which learning could be used to gain
advantage. This section briefly recounts some of the key opportunities we see.

Learning and clustering: We believe that clustering is a particular form of a broader capability that we shall refer to as scaling

and outline in more detail subsequently. We claim the clustering technique has not seen application in other optimization

problems such as satisfiability because heuristics for its use can be difficult to conceptualize, except in a few CAD applications

such as place-and-route and partitioning where simple spatial or neighborhood heuristics apply. There is no coherent theory of

how to find a good clustering of a problem, and current methods are limited to classes of problems where intuitions about locality
hold. The initial work by Hagen and Kahng [ 1997] suggest learning good clusters is feasible, and opens the door for the
application of rigorous learning methods.

Combining and learning heuristics: While isolated cases of learning or tuning heuristics exist, we know of no thorough study

encompassing state of the art algorithms that takes a variety of definitions of a heuristic and maps them onto a learning problem

which allows efficient evaluation. There is a need to establish a theory under which different kinds of heuristics can be efficiently
learnt from data, and multiple heuristics combined. Because existing problems provide a source of prior knowledge about the

next problem encountered, Bayesian decision theory, the statistical theory for incorporating prior knowledge [Bernardo and

Smith, 1994] could calibrate and combine existing best-practice search heuristics and optimally combine them with probing
information from the current search (such as local minima or failed paths) to develop more computationally economical methods
of estimating properties of the global minimum.

Opportunities for learning and data-mining are barely explored: Some significant successes exist [Samuel 1963; Tesauro,

1994; Baluja et al., 1998; Boyan et al. 1998], yet we contend that there remain significant untapped opportunities for using

learning more generally to improve optimization algorithms. Careful empirical studies of a variety of different learning scenarios

are needed, crafted with inside knowledge of state-of-the-art algorithms. In the project we would investigate the many rich

families of multivariate learning algorithms available to us [Buntine, 1996; Ripley, 1996] and apply learning methodology in a

rigorous manner. On this project, the positioning of a data-mining/learning expert in an applied optimization (CAD) department
makes this uniquely possible.

Tuning algorithms: In many cases, the top level of optimization algorithms could be configured and tuned automatically.

Limited research shows this is possible, but there is no thorough study of the range of methods required, and general methods

have yet to be explored. We claim the automatic configuration and tuning of optimization algorithms may soon may be necessary

to attain state-of-the-art performance. A research challenge is to develop a simple palette of techniques that provides good

coverage of problems encountered in practice. We need to make developers aware that this capability is realistic. Once they
start using it, we claim it will become necessary.

Probabilistic modeling: Careful probabilistic analysis such as is done for backtracking with SAT [Purdom et al., 1997] and "go
with the winners" [Aldous et al., 1994] yields significant insights into the process. We would also like to develop a

noise/probability model for local minima in order to better understand the big valley effect. We need to place these in the context
of a realistic but simplified search problem/algorithm.

7 Conclusions

We have explored methods for performing dynamic visualization of intermediate optimization results, and based on our

experiences, we have proposed and prototyped a system called JavaTime Visualization. These system is intended to aid

prototyping. Moreover, we have understood some of the issues involved with clustering and problem decomposition, used both

to improve optimization performance and to aid visualization. We see these techniques as being crucial tools for subsequent

work. We have surveyed current opportunities for applying learning technology to optimization and arrived at a number of
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scenarios. We explored one of those, "learning to cluster," and achieved significant results. Another of these opportunities is
decision theoretic control at the large scale of optimization algorithms. We note that the implementation of this dovetails nicely

into our JavaTime Visualization system. Thus, in this research effort, we have explored and proposed a comprehensive set of
tools for integrating visualization, learning, and decision theoretic control of optimization.
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